📚

 > 

♾️ 

 > 

10.1 Defining Convergent and Divergent Infinite Series

2 min readjune 18, 2024

Avanish Gupta

Avanish Gupta

Avanish Gupta

Avanish Gupta


AP Calculus AB/BC ♾️

279 resources
See Units

https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(565).png?alt=media&token=204672c6-3cba-4510-a7f3-e8ac22dbfd02
This first, longer part of the guide concerns the behavior of numerical series and whether they have an actual sum as the number of terms approaches infinity. There are many tests and methods that we can use to answer this question, each working on specific cases. However, before we can answer this, we need to first talk about what sequences and series are first.
Before we start talking about series, we need to talk about sequences and some terminology about sequences.

What is a Sequence?

A sequence is just a list of terms related by a common pattern to each other.
Here is how we represent sequences:
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(690).png?alt=media&token=4e24cfe7-e42f-4432-8628-a272e1c95732
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(691).png?alt=media&token=4fa476cc-d06a-4d16-9b5c-540ba867a817
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(695).png?alt=media&token=6933ec62-fe6d-401b-a5da-5e5e4e8872f5

The Limit of A Sequence

Like functions, sequences have limits! These are found in much the same way that the limit of a function is found, but in this unit, we are only interested in finding out the limit as n approaches ♾️. Also note that all limit properties that hold for regular functions hold for sequences as well.
There is also a special theorem that holds for sequence limits as well which will be useful for.
We will not be doing any examples specifically geared towards finding limits of sequences, but these will be used in other applications as well. 
The first of these is finding out whether a sequence is convergent or divergent. The words convergent and divergent will show up a lot in this unit, so stay alert!
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(697).png?alt=media&token=c0bdb847-f66f-4884-b5cb-1ee7558743bc
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(700).png?alt=media&token=871a908f-6935-4e9d-ab1e-5b1724532085
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(701).png?alt=media&token=2a413c5e-6b25-43e2-8df4-88a7bde0170f

Some Notation and Terminology on Sequences

Before we move on to series, there is some terminology that we have to cover real quick when we talk about sequences.
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(708).png?alt=media&token=0433fa6b-d0cb-4338-a415-2708f8a70dfe
These definitions lead to a theorem about sequence convergence.
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(709).png?alt=media&token=32f7c47c-c1d4-43d5-95e8-db82c9aa5f7f
Now that we understand sequences, let’s start talking about series!

What is a Series?

https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(710).png?alt=media&token=596cfcf0-10b0-40a7-bcfb-6e9c1073ea4b
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(713).png?alt=media&token=eba76bd8-1f39-4f74-b5a6-95e478128d2f
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(714).png?alt=media&token=06521f43-38a4-414c-9791-bb345d5b7463

Convergence and Divergence of Series

Like sequences, series can also converge or diverge. We will list their definitions below.
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(716).png?alt=media&token=88eb9cad-7033-4ee3-aff9-1cef442b2227
Since the series we just did has a finite value for the infinite partial sum, the series converges. In the rest of the first part of the unit, we will find a way to determine whether a series is convergent or divergent, so don’t worry if you don’t know this yet!
Here are some properties of convergent series that will be helpful throughout the unit!
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(717).png?alt=media&token=2f14a708-c8ea-4420-b7b2-3c25f8dccb53

Problems

https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2FScreenshot%20(719).png?alt=media&token=8804a5f7-9843-4bed-a0f5-332d9a416799
Define the following terms.
  1. Sequence:
  2. Series:
  3. Monotonic Sequence:
  4. Bounded Sequence:
  5. Convergent/Divergent Sequence:
  6. Convergent/Divergent Series:
Browse Study Guides By Unit
👑Unit 1 – Limits & Continuity
🤓Unit 2 – Fundamentals of Differentiation
🤙🏽Unit 3 – Composite, Implicit, & Inverse Functions
👀Unit 4 – Contextual Applications of Differentiation
Unit 5 – Analytical Applications of Differentiation
🔥Unit 6 – Integration & Accumulation of Change
💎Unit 7 – Differential Equations
🐶Unit 8 – Applications of Integration
🦖Unit 9 – Parametric Equations, Polar Coordinates, & Vector-Valued Functions (BC Only)
📚Study Tools
🤔Exam Skills